
On Fault Tolerance, Locality, and
Optimality in Locally Repairable Codes

Oleg Kolosov1, Itzhak Tamo1, Gala Yadgar2, Matan Liram2, Alexander Barg3

Tel Aviv University1, Technion2, University Of Maryland3

1

Availability with Reed-Solomon

D D D D P

𝑘𝑘 data blocks

𝑛𝑛 − 𝑘𝑘
parity blocks

stripe

D PD

2

An (𝑛𝑛,𝑘𝑘) erasure code with 𝑘𝑘 data blocks

Low overhead
Can recover from at most 𝑛𝑛 − 𝑘𝑘 failures minimal redundancy (MDS)
Required reading 𝑘𝑘 blocks for lost block recovery

Locally Repairable Codes (LRC)

P

D PD D D PD D

P
Local
parity

Non-MDS (non-optimal overhead)

Fast recovery (good for degraded read)

Global parity

Huang et al. 2012
Huang et al. 2013
Sathiamoorthy et al. 2013

Locality

𝑟𝑟 = 3

Distance
Minimum #failures that
cause data loss

𝑑𝑑 = 4 (𝑐𝑐𝑐𝑐𝑛𝑛 𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓 3 𝑓𝑓𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑓𝑓)

𝑛𝑛, 𝑘𝑘, 𝑟𝑟 LRC → 10,6,3 Azure-LRC

3

Local
group

Node failure and reconstruction

Non-MDS (non-optimal overhead)
Fast recovery
Slow recovery of global parity

P

PD D D PD D

P

D

4

Recovery of global parity blocks

Optimal-LRC
Full-LRC (vs. data-LRC) [also information-symbol locality vs. all-symbol locality]

Optimal 𝒅𝒅 for a variety of combinations (but not for all…)

Tamo and Barg, 2014

Optimal minimum distance

(full-LRC)

𝑑𝑑 = 𝑛𝑛 − 𝑘𝑘 − ⁄𝑘𝑘 𝑟𝑟 + 2
Gopalan et al. 2012

P

D D D PD DD

P

P

(10,6,4) Optimal-LRC

5

Which one is better?

P

PD D D PD D

P

D

Overhead = 1.66
Locality = 4
Distance = 4

Overhead = 1.83
Locality = 3
Distance = 4Overhead = 1.66

Locality = 3
Distance = 4

→ There is no mathematical framework for comparison of existing LRC approaches
→ What’s optimal in practice?

6

Goal: Lay mathematical basis for comparison

Measuring repair costs
Previously:

Doesn’t address overhead

Overhead: +16.6%
ARC: -24.1%
NRC: -16.6%
DC: 0%

Normalized repair cost (NRC) =

ARC X Overhead = ∑𝑖𝑖=1
𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏𝑖𝑖)

𝑘𝑘

Degraded cost (DC) = ∑𝑖𝑖=1
𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏𝑖𝑖)

𝑘𝑘

→ Useful for degraded read

7

Average repair cost (ARC) =

= ∑𝑖𝑖=1
𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑏𝑏𝑖𝑖)

𝑛𝑛

Our contribution:

Our LRC extensions

Azure-LRC+1
• Full-LRC extension of Azure-LRC

Azure-LRC
• Removed division constraints

Optimal-LRC
• New construction
• Achieves optimal 𝒅𝒅

8

Xorbas
• A trivial extension

Which construction is best for my system?

9

NRC and
Degraded cost

ARC

Want to maximize 𝒅𝒅 and minimize NRC
New metric ⁄𝑵𝑵𝑵𝑵𝑵𝑵

𝒅𝒅 (rd-ratio)

→ Optimal-LRC is best for fixed (𝒏𝒏,𝒌𝒌)

Durability & repair cost

10

System level evaluation setup
Goals:
• Validate NRC accuracy
• Evaluate NRC abilities of estimation
• Compare LRCs

Platform:
• Ceph – a distributed open-source object-based storage system
• Amazon EC2

Methods:
• Utilize Ceph LRC plugin for Azure-LRC
• Implement Optimal-LRC
• Simulate failure and measure

……

0 1 2 …… 36 37 38 39

11

Predicting repair time?

→ NRC can’t predict accurately – but it can predict a trend
→ Overall, full-LRCs outperform data-LRC

12

Also validated on(in the paper):
→ Various storage types
→ Various network architectures
→ Application workloads

Summary
• First systematic comparison of LRCs

o Defined theoretical framework for comparison of LRCs
o Validated on a real system

• Generalized known LRC codes

→ ARC is limited – we introduced NRC
→ There is no one optimal code (theory vs. practice)
→ Optimize repair cost ≠ optimize degraded cost

Our Ceph implementation can be found here:
https://github.com/olekol33/optlrc2018/blob/master/src/erasure-code/optlrc

Conclusions

13

Thank you

https://github.com/olekol33/optlrc2018/blob/master/src/erasure-code/optlrc

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

